mawdesigns
Topic: architecture | authors | design education | design entrepreneurship | engineering & technology | fashion & textile | furniture & interior | general | graphic | human resources | industrial & product | landscape | people | reviews | university research | web
Date: 2013 | 2014 | 2015 | 2016 | jan'17 | feb'17 | mar'17 | apr'17 | may'17 | jun'17 | jul'17 | aug'17 | sep'17 | oct'17 | nov'17 | dec'17 | 2018 | jan'19 | feb'19 | mar'19 | apr'19 | may'19 | jun'19 | jul'19 | aug'19 | sep'19 | oct'19 | nov'19 | dec'19 | jan'20 | feb'20 | mar'20 | apr'20 | may'20 | jun'20 | jul'20 | aug'20 | sep'20 | oct'20 | nov'20 | dec'20 | jan'21
Headlines
Sustainable architecture: Innovative and inspiring building design | Wallpaper, 06 feb 2021
The Most-and Least-Soothing Paint Colors, According to Interior Design Pros | The Wall Street Journal, 05 feb 2021
Julia Watson: What Can We Learn From Indigineous Design Developed Over Generations? | NPR, 05 feb 2021
The Dezeen guide to wood in architecture, interiors and design | Dezeen, 05 feb 2021
Dishing up 3D Printed Food, One Tasty Printout at a Time | 3D Printing Progress, 04 feb 2021
How Artificial intelligence is Transforming the Apparel Industry | BBN Times, 03 feb 2021
5 Trends for Industry 4.0: The Factory of the Future (2021 and Beyond...) | Electronic Design, 02 feb 2021
Doing the Not-Yet-Possible in Aircraft Design | IndustryWeek, 29 jan 2021
Design thinking: How a human-centered culture drives transformation success | The Enterprisers Project, 27 jan 2021
Infographic: Web Design Trends and Statistics 2021 | Social Media Today, 26 jan 2021
January 2017
Mohammad Anas Wahaj | 25 jan 2017
Team of researchers from Massachusetts Institute of Technology (USA) (Markus Buehler, Zhao Qin, Gang Seob Jung, Min Jeong Kang), has designed one of the strongest lightweight materials known, by compressing and fusing flakes of graphene, a 2-dimensional form of carbon. The new material, a sponge-like configuration with just 5% the density of steel, can have a strength 10 times more. The findings, published in the journal 'Science Advances', show that critical factor of 3-D form is their unusual geometrical figure, suggesting that similar strong, lightweight materials can be made from other materials by creating similar geometric figures. 2-D materials have exceptional strength alongwith unique electrical proberties. But they are extraordinarily thin. Prof. Buehler says, 'They are not very useful for making 3-D materials that could be used in vehicles, buildings, or devices. What we've done is to realize the wish of translating these 2-D materials into 3-D structures.' Prof. Qin adds, 'Once we created these 3-D structures, we wanted to see what's the limit - what's the strongest possible material we can produce.' According to Prof. Buehler, 'You can replace the material itself with anything. The geometry is the dominant factor. It's something that has the potential to transfer to many things.' Prof. Huajian Gao of Brown University comments, 'This is an inspiring study on the mechanics of 3-D graphene assembly. The combination of computational modeling with 3-D-printing-based experiments used in this paper is a powerful new approach in engineering research. It is impressive to see the scaling laws initially derived from nanoscale simulations resurface in macroscale experiments under the help of 3-D printing. This study shows a promising direction of bringing the strength of 2-D materials and the power of material architecture design together.' Read on...
MIT News:
Researchers design one of the strongest, lightest materials known
Author:
David L. Chandler
©2021, ilmeps
disclaimer & privacy