Hum Hain HindustaniThe Global Millennium Classilmepsmawkeywordprofileilmedsanasmarkmawdesigns
men&women@work


the3h | glomc00 | ilmeps | mawdesigns | anasmark | ilmeds | read | contact


mawdesigns
Topic: architecture | authors | design education | design entrepreneurship | engineering & technology | fashion & textile | furniture & interior | general | graphic | human resources | industrial & product | landscape | people | reviews | university research | web
Date: 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | jan'21 | feb'21 | mar'21 | apr'21 | may'21 | jun'21 | jul'21 | aug'21 | sep'21 | oct'21 | nov'21 | dec'21 | jan'22 | feb'22 | mar'22 | apr'22 | may'22 | jun'22 | jul'22 | aug'22 | sep'22 | oct'22 | nov'22 | dec'22 | jan'23 | feb'23 | mar'23 | apr'23 | may'23 | jun'23 | jul'23 | aug'23 | sep'23

Engineering & Technology Design

Mohammad Anas Wahaj | 13 jan 2019

Team of researchers from University of Michigan at Ann Arbor (Prof. Timothy F. Scott, Prof. Mark A. Burns, Martin P. De Beer, Harry L. Van Der Laan, Megan A. Cole, Riley J. Whelan) have developed a new approach to 3D printing that lifts complex shapes from a vat of liquid at up to 100 times faster than conventional 3D printing processes. 3D printing could by highly beneficial for small manufacturing jobs without the need for a costly mold. But the usual 3D printing approach of building up plastic filaments layer by layer hasn't been usable in that aspect. Prof. Scott says, 'Using conventional approaches, that's not really attainable unless you have hundreds of machines.' The U. of Michigan innovative 3D printing method solidifies the liquid resin using two lights to control where the resin hardens - and where it stays fluid. This enables solidification of the resin in more sophisticated patterns. The process can make a 3D bas-relief in a single shot rather than in a series of 1D lines or 2D cross-sections. The printing demonstrations from this approach include a lattice, a toy boat and a block M. Prof. Burns says, 'It's one of the first true 3D printers ever made.' By creating a relatively large region where no solidification occurs, thicker resins - potentially with strengthening powder additives - can be used to produce more durable objects. The method also bests the structural integrity of filament 3D printing, as those objects have weak points at the interfaces between layers. Prof. Scott adds, 'You can get much tougher, much more wear-resistant materials.' The research paper, 'Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning', is to be published in Science Advances. Read on...

University of Michigan News: 3D printing 100 times faster with light
Authors: Timothy Scott, Mark Burns, Nicole Casal Moore, Kate McAlpine


Mohammad Anas Wahaj | 29 aug 2018

The possibility of eco-friendly biodegradable paper-based batteries is now made a reality by the scientists at Binghampton University (SUNY), Prof. Seokheun 'Sean' Choi from the Electrical and Computer Engineering Department and Prof. Omowunmi Sadik from the Chemistry Department. Their research titled 'Green Biobatteries: Hybrid Paper-Polymer Microbial Fuel Cells' was recently published in Advanced Sustainable Systems. Prof. Choi engineered the design of the paper-based battery, while Prof. Sadik was able to make the battery a self-sustaining biobattery. The biobattery uses a hybrid of paper and engineered polymers. The polymers - poly (amic) acid and poly (pyromellitic dianhydride-p-phenylenediamine) - were the key to giving the batteries biodegrading properties. Prof. Choi says, 'There's been a dramatic increase in electronic waste and this may be an excellent way to start reducing that. Our hybrid paper battery exhibited a much higher power-to-cost ratio than all previously reported paper-based microbial batteries. The polymer-paper structures are lightweight, low-cost and flexible. Power enhancement can be potentially achieved by simply folding or stacking the hybrid, flexible paper-polymer devices.' Read on...

BingU News: SCIENTISTS CREATE BIODEGRADABLE, PAPER-BASED BIOBATTERIES
Author: Rachael Flores


Mohammad Anas Wahaj | 30 jul 2018

Team of 25 researchers from 7 institutes in Europe, USA and China (Linköping University, Sweden: Shula Chen, Xiao-Ke Liu, Liangqi Ouyang, Yingzhi Jin, Galia Pozina, Irina A. Buyanova, Weimin M. Chen, Olle Inganäs, Fengling Zhang, Feng Gao; Georgia Institute of Technology, USA: Zilong Zheng, Veaceslav Coropceanu, Jean-Luc Brédas; Chinese Academy of Sciences, China: Deping Qian, Huifeng Yao, Sunsun Li, Bowei Gao, Jianhui Hou; École Polytechnique Fédérale de Lausanne, Switzerland: Wolfgang Tress; Imperial College, UK: Thomas R. Hopper, Artem A. Bakulin; The Hong Kong University of Science and Technology, Hong Kong: Jing Liu, Shangshang Chen, He Yan; University of Cambridge, UK: Jiangbin Zhang) have come together to develop rules for designing high-efficiency organic solar cells. Their research, 'Design rules for minimizing voltage losses in high-efficiency organic solar cells', was published in Nature Materials. Lead researcher, Prof. Feng Gao of Linköping University, says, 'We have formulated some rational design rules to minimize energy losses in organic solar cells. Following these rules, we present a range of examples with low energy losses and high power conversion efficiencies.' The research provides two fundamental rules to minimize energy losses in organic solar cells - (1) Minimize the energy offset between donor and acceptor components. (2) Make sure that the low-gap component in the blend has a high photoluminescence yield. According to researchers, theoretically the limit for the fraction of the sun's energy that can be obtained in solar cells is around 33%, but laboratory experiments with silicon-based solar cells have achieved 25% at best. Prof. Olle Inganäs of Linköping University, 'But we now know that there is no difference - the theoretical limit is the same for solar cells manufactured from silicon, perovskites, or polymers.' Read on...

Photonics Media: Design Rules for Building Efficient Organic Solar Cells
Author: NA


Mohammad Anas Wahaj | 22 jul 2018

In a developing country like India low-income groups often lack access to proper healthcare. But, mobile technology can provide ways to enable these groups have knowledge and resources to drive preventative healthcare. Lead researchers, Aakash Ganju (co-founder of Avegen), Sumiti Saharan (Neuroscientist, Team Lead of Design & Research at Avegen), Alice Lin (Global Director of social innovation at Johnson & Johnson), Lily W. Lee (President of Almata, a division of Avegen), explain the research conducted by their team on the digital usage patterns of underserved groups in two urban areas of India, and iteratively tested user interface and content design. Researchers generated primary research insights from more than 250 new mothers and fathers living in low-income communities, and achieve understanding of the core barriers and digital needs of this population. Researchers suggest, 'Embedding health care into digital tools requires that providers overcome contextual barriers and undertake deliberate design processes. To succeed, providers must develop a nuanced understanding of the obstacles to consuming information digitally, as well as glean insights from technology, interface design, and behavioral science.' Following are some insights from the research - (1) Cost is no longer the biggest barrier: In the last year, a strong government regulatory authority has promoted competition and consumer benefits that have rapidly driven down both smartphone and data costs. (2) Infrastructure can overcome any remaining cost barriers: Only 5% of people living in less-connected and less-developed localities owned smartphones, compared to a significant 56% of individuals with similar incomes living in neighborhoods with good mobile network and infrastructure. (3) Digital experiences are not often built for low-income, urban populations: The most pervasive barrier to digital adoption in India today is a lack of knowledge about how to use digital interfaces. Language is also a barrier. India has an overall literacy rate of 74%. However, only about 10% of Indians can communicate in English - the language of the Internet. Local language content is scarce. There are gaping holes in the understanding of early-stage user requirements and pain points, from both the digital interface and content experience perspectives. (4) There is a lack of trust in health-related digital information: Low-income, underserved communities who have not been exposed to authentic digital content often have extreme distrust in digital information pertaining to health. Only 12% of families thought information from digital sources was reliable, compared to more than 90% finding information from doctors and mothers to be most, very, or somewhat reliable. According to researchers, to truly meet the needs of underserved consumers, providers must focus on the following areas - (1) High-quality content: To engage users on digital platforms, providers must use differentiated content that connects with a user's specific journey. The form, tone, and continuity of content matters. Video formats optimized for small, low-quality displays are most effective in driving engagement. When visual formats are not feasible, audio formats are the next best alternative. Understand the environments in which users consume health. Include local elements in the content, like referring to local clinics etc. (2) Behavior change: Engaging users is vital to directing changes in consumer health behavior. It's important to be deliberate about the design of the user journey. Offering incentives for content consumption, sharing, and specific health-related behaviors can help nudge users toward desired health-related behaviors. (3) Technology: Mobile apps need to be light and fast, have low memory and data requirements, and be able to run on slow and patchy networks. Display data consumption frequently, enhanced ability to view offline content and share content within community is important for engagement. (4) Design team structure: Multidisciplinary teams that bring together expertise in technology, design, business and sustainability, end-user thinking, and behavioral sciences tend to create the most effective designs. To design for the end user, providers must design with the end user, particularly for populations who are not digitally fluent. Teams should develop a thinking environment and processes that allow for hypothesis development, application design, testing, analytics, and retesting in rapid, parallel, iterative cycles. Read on...

Stanford Social Innovation Review: Expanding Access to Health Care in India Through Strong Mobile Design
Authors: Aakash Ganju, Sumiti Saharan, Alice Lin Fabiano, Lily W. Lee


Mohammad Anas Wahaj | 29 may 2018

Researchers at The University of British Columbia (Okanagan, Canada), Prof. Abbas Milani and graduate student Armin Rashidi, are working to solve the issue of wrinkling when it comes to making textile composites. Their research, 'A multi-step biaxial bias extension test for wrinkling/de-wrinkling characterization of woven fabrics: Towards optimum forming design guidelines', was recently published in Materials & Design Journal. According to Prof. Milani, wrinkling is one of the most common flaws in textile composites, which are widely used for prototypes, as well as mass production within prominent aerospace, energy, automotive and marine applications. Researchers have investigated several de-wrinkling methods and have discovered that they can improve their effectiveness by pulling the materials in two directions simultaneously during the manufacturing process. Mr. Rashidi says, 'The challenge was to avoid unwanted fibre misalignment or fibre rupture while capturing the out-of-plane wrinkles. Manufacturers who use these types of composites are looking for more information about their mechanical behaviour, especially under combined loading scenarios.' Prof. Milani, who is director of Materials and Manufacturing Research Institute at UBC Okanagan, says, 'Composite textiles are changing the way products are designed and built in advanced manufacturing sectors. As we continue to innovate in the area of composite textiles to include more polymer resin and fibre reinforcement options, this research will need to continue in order to provide the most up-to-date analysis for manufacturers in different application areas.' Read on...

UBC Okanagan News: Researchers improve textile composite manufacturing
Author: Nathan Skolski


Mohammad Anas Wahaj | 22 apr 2018

According to a report by The Times of India, engineers in India are now showing more interest in the automobile industry as compared to the usual IT industry, signalling a boom time for the more traditional manufacturing sector. Tightening of US visa rules, streamlining of staff by big IT companies and increasing importance of big data and artificial intelligence in automobile industry are some factors promoting this shift. NASSCOM says that IT sector will see single-digit growth for the third-consecutive year and jobless growth for the second year. Gopal Mahadevan, CFO of Ashok Leyland, says, 'Earlier mechanical engineers were going to the IT industry but now they're coming back. There appears a reverse brain drain happening and suddenly we're getting lots of applications from this segment, much more than in the last 3 years.' According to the Naukri Jobspeak data for March 2018, there has been significant hiring growth for the auto industry. The sector has witnessed a 33% growth in March 2018 compared to March 2017. Rajan Wadhera, President of Automotive Division at Mahindra & Mahindra, says, 'The IT allure is beginning to wear off as that segment has almost reached a saturation point. The pay growth is also not as good as it once was. So the attraction to join the auto industry is back.' Thammaiah B. N., MD of Kelly Services, says, 'Product specialists are in demand and their experience levels are in the tune of 8 to 10 years or higher. The auto industry itself has stepped up its hiring by 30% and IT has been a major contributor.' Read on...

The Economic Times: Automobile industry is the new IT for India's engineers
Author: NA


Mohammad Anas Wahaj | 27 oct 2017

India's future success will be defined on the basis of how its positive elements like demographic dividend, IT and software, manufacturing, agriculture, government initiatives (Make in India, Digital India, Skill India, Startup India) etc, gel together effectively and grow. Adding to all these, focus on research, design and innovation, will further propel creation and development of new and emerging technologies and concepts. Specifically, Indian auto industry does have R&D capabilities, but it is mostly driven by foreign collaborations and partnerships. Moreover, Indian operations of most foreign auto makers rely on their global development centers when it comes to technological innovations. But the dynamics of the industry are shifting, and companies are mobilizing resources and assets towards design and development also, in addition to manufacturing. The change is also visible in the electric vehicle segment with a strong policy focus. Recent conference organized by NASSCOM and Autocar Professional was directed towards discussing the design, R&D and technology based future of the industry. Sameer Yajnik, COO-APAC of Tata Technologies, says, 'Indian engineers, thus far, have brought together just a few parts of the jigsaw puzzle in terms of vehicle development, but this is set to be transformed. With EVs, ADAS, autonomous, connected cars, et al, there are a slew of technology-driven changes that need to be responded to and India is an excellent place.' Patrick Newbery, Chief Digital Officer of Global Logic, says, 'Design and engineering work best when coupled together, and the Indian start-up ecosystem has displayed a good show of that already...Amalgamating design and engineering, as well as with its ability to innovate and create as a response-stimulus to change, India holds a strong place in developing new future technologies, where even the US would be looking outside to outsource these innovative solutions. There is more likelihood of innovation coming out of such environment.' Current spend in automotive engineering and R&D of Europe is 35%, that of US is 25% and, India's is at 10%. This is expected to triple in next 3 years. Sanjeev Verma, CEO of Altran India, says, 'India holds a very important place in the whole jigsaw and especially can play a great role in designing passive safety and IoT systems...With the whole ecosystem springing up now, the next three to four years are going to be extremely transformational for the development vertical in the Indian automotive sector.' Commenting on design in India, Raman Vaidyanathan of Tech Mahindra says, 'Indian engineering is bound to be more frugal, compared to the rest of the world because of the country’s legacy in being cost conscious. This is very positive as it implies that a good quality product, designed and developed to a cost in India could be produced in the emerged markets, while the reverse is going to prove rather expensive.' The challenge of skilled human resources in design and engineering in India remains. NASSCOM has started a foundation course in integrated product development that has reached 1000 colleges since CY2015. Government, academica and industry has to come up with integrated strategies that need to be applied to upgrade the knowledge and skills of graduates coming out of technology institutes and ensure success of design, research and development in India. Read on...

Autocar Professional: Beyond Make in India - Design and develop in India now imperative
Authors: Sumantra B. Barooah, Mayank Dhingra


Mohammad Anas Wahaj | 19 sep 2017

Team of architects at Ant Studio (India) - Monish Siripurapu, Abhishek Sonar, Atul Sekhar, Sudhanshu Kumar - have used computational technologies (CFD Analysis) and reinvented the traditional evaporative cooling technique to lower temperature of emissions from an electronics factory with less cost, energy consumption and impact on surrounding environment. Ancient Egyptians, Persians and later on Mughals in India utilized the evaporative cooling technique to overcome hot climate. According to a research study by Prof. Asif Ali of Aligarh Muslim University (India), published in International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies (2013), 'The emperor's throne at the centre of Diwan-e-Khas is surrounded by two sets of openings four meters apart from each other. These openings were covered with grass mats with sprinkled water during summers...' The architects from Ant Studio stacked cylindrical terracotta cones, giving it a circular shape, and water was made to run over them. Hot air coming from the generators passed over the system lowering the temperature substantially. Further technical details of the system can be obtained from an ArchDaily.com article 'This Innovative Cooling Installation Fights Soaring Temperatures in New Delhi.' Monish Siripurapu, founder of Ant Studio, says, 'As an architect, I wanted to find a solution that is ecological and artistic, and at the same time evolves traditional craft methods...I believe this experiment worked quite well functionally. Findings from this attempt opened up a lot more possibilities where we can integrate this technique with forms that could redefine the way we look at cooling systems, a necessary yet ignored component of a building’s functionality. Every installation could be treated as an art piece...The circular profile can be changed into an artistic interpretation while the falling waters lend a comforting ambience. This, intermingled with the sensuous petrichor from the earthen cylinders allow for it to work in any environment with the slightest of breeze. Having said that, there are many factories throughout the country that face a similar issue and this is a solution that can be easily adopted and a widespread multiplication of this concept may even assist the local potters.' Read on...

Atlas Obscura: Architects in India Use Natural Cooling to Take the Edge off Factory Emissions
Author: Vittoria Traverso


Mohammad Anas Wahaj | 09 sep 2017

Education and learning has to keep pace with the happenings in industry, and equip students with the cutting-edge knowledge and skills, to assure their success in the highly competitive marketplace. Simon Biggs, Education Liaison Officer for Wales at Renishaw, explains how 3D printing is the new technology that is becoming mainstream part of the classrooms for engineering and mathematical learning. Mr. Biggs says, '3D printing is a well-established industrial technology for prototyping and manufacturing, particularly popular with the aerospace and defence sectors. Also known as additive manufacturing (AM), 3D printing is the process of making a solid 3D object from a digital computer aided design (CAD) file...3D printing is a rapid production method with minimal waste material. Its design flexibility means users can manufacture bespoke objects for a low cost...Understanding and using this growing technology can benefit children's learning, particularly in science, technology, engineering and mathematics (STEM) subjects but also beyond these more traditional fields in music, design technology, history, geography and biology...Exciting and innovative projects are also a simple way to keep pupils engaged in STEM subjects, which is a vital step forward in addressing the STEM skills shortage.' Explaining the rise of 3D printers in schools and their use to develop new skills in students, he says, 'The increasing numbers of 3D printers in schools is not only due to the increasing recognition of 3D printing being a relevant and engaging educational tool, but also relates to the number and availability of low cost 3D printing machines...Advances in resources available for teachers and other education professionals are also making 3D printing more widely accessible...Using 3D printing as a production method enables students and pupils to move from the conception of an idea to producing a physical object with relative ease...Interrogating a physical object can make it easier for pupils to spot mistakes in designs. This allows them to gain valuable problem solving skills in a creative, hands-on way.' Read on...

The Engineer: The future of 3D printing in education
Author: Simon Biggs


Mohammad Anas Wahaj | 17 jun 2017

Innovation Showcase (ISHOW) by American Society of Mechanical Engineers (ASME) is a hardware competition for socially minded projects. The purpose is to create awareness that hardware engineers too play a role in social innovation. K. Keith Roe, President of ASME, says, 'Our research showed a tremendous lack of support for hardware innovators seeking to enter global markets and make a societal impact.' Paul Scott, ASME ISHOW Director, says, 'From South America to West Africa to Southeast Asia, there are many talented folks that are changing paradigms with their work.' Currently, ASME ISHOW is held in US, Kenya and India. This year's American competition will be held on 22 June 2017. According to ISHOW website (thisishardware.org), 10 American finalists alongwith their projects are - (1) Hahna Alexander (SmartBoots: Self-charging work boots that collect status and location data and provide workforces in hazardous environments with actionable insights); (2) Jonathan Cedar (BioLite HomeStove: An ultra-clean cookstove that reduces smoke emissions by 90% and biomass fuel consumption by 50% compared to traditional open fire cooking, while also co-generating electricity from the flame to charge mobile phones and lights); (3) Matthew Chun (RevX: A transfemoral rotator that restores dignity to low-income amputees by enabling them to sit cross legged, dress themselves, get back to work, and more); (4) Shivang Dave (QuickSee: PlenOptika developed the QuickSee to disrupt the barriers to eyeglass prescriptions for billions of people worldwide so that they can get the eyeglasses they need); (5) Alexandra Grigore (Simprints: With a novel fingerprinting system, Simprints aims to create a world where lack of identity is never the reason why anyone is denied basic services in healthcare, education and finance); (6) Mary McCulloch (Voz Box: Millions of people, right now, are nonverbal. Current devices are too expensive and uncustomizable. The Voz Box is an innovative speech generation device that has customizable sensors and is affordable); (7) Erica Schwarz (Kaleyedos Imaging Device (KID): A revolutionary infant retinal imager that will empower neonatal intensive care units (NICUs) worldwide to decrease the incidence of visual impairment and blindness due to infant retinal disease); (8) Kenji Tabery (VeggieNest: Smart home gardening systems, and aims to address the growing market need for access to organic, affordable, and nutritious produce that enable global consumers to be food secure); (9) Team Sixth Sense (Team Sixth Sense: We have designed a system of sensor to attach to lower-limb prosthetics that works with NeoSensory's current technology to provide realtime vibrotactile feedback); (10) Quang Truong (EV 8 Cooler: Evaptainers creates low-cost mobile refrigerators that run on water. These are perfect for low income families who live off grid or cannot afford a conventional refrigerator). Read on...

Technical.ly DC: 10 engineers will showcase hardware's role in social innovation
Author: Nia Dickens

Latest             ⊲ Newer Posts             Engineering & Technology             Older Posts ⊳             Last



the3h | glomc00 | ilmeps | mawdesigns | anasmark | ilmeds | read | contact


©2024, ilmeps
disclaimer & privacy