mawdesigns
Topic: architecture | authors | design education | design entrepreneurship | engineering & technology | fashion & textile | furniture & interior | general | graphic | human resources | industrial & product | landscape | people | reviews | university research | web
Date: 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | jan'22 | feb'22 | mar'22 | apr'22 | may'22 | jun'22 | jul'22 | aug'22 | sep'22 | oct'22 | nov'22 | dec'22 | jan'23 | feb'23 | mar'23 | apr'23 | may'23 | jun'23 | jul'23 | aug'23 | sep'23 | oct'23 | nov'23 | dec'23 | jan'24 | feb'24 | mar'24 | apr'24 | may'24 | jun'24 | jul'24 | aug'24 | sep'24 | oct'24 | nov'24 | dec'24
Headlines
Ten design projects from a burgeoning generation of Japanese designers | Dezeen, 10 jan 2025
'AI can optimise designs, but it cannot replicate human ingenuity': Nien Siao on juggling technology and creativity | The Economic Times, 10 jan 2025
Why Studying Design Matters in a Creative World TechBullion, 10 jan 2025
Will GenAI Replace Fashion Designers? | WWD, 10 jan 2025
Alessandro Stabile's ethical and elegant innovations | DesignWanted, 09 jan 2025
Is Uzbekistan the next great architectural destination? | CNN, 08 jan 2025
'The people who succeed are the ones who are curious': graphic designer and Honorary RDI Michael Bierut | Wallpaper, 08 jan 2025
Design That Feels: Merging sustainability with sensory experiences in packaging | Creative Boom, 07 jan 2025
Stainless Steel in Interior Design: Transforming Spaces with Industrial Elegance | ArchDaily, 06 jan 2025
Demystifying The Technology Vs. Design Debate In Web Design | Forbes, 18 dec 2025
Engineering & Technology Design
Mohammad Anas Wahaj | 23 mar 2017
Norimasa Nishiyama of German Electron Synchrotron DESY, and international team of researchers from Germany and Japan (Ryo Ishikawa, Hiroaki Ohfuji, Hauke Marquardt, Alexander Kurnosov, Takashi Taniguchi, Byung-Nam Kim, Hidehiro Yoshida, Atsunobu Masuno, Jozef Bednarcik, Eleonora Kulik, Yuichi Ikuhara, Fumihiro Wakai, Tetsuo Irifune), have created a 2mm diameter disc of transparent silicon nitride, one of the hardest material known. The scientific report titled, 'Transparent Polycrystalline Cubic Silicon Nitride', was recently published in Nature. The transparent ceramic could be used for ultra-tough windows able to withstand extreme conditions. Windows that let users peer into engines and industrial reactors, or protect optical sensors from high pressures or heat are usually made of diamond, an expensive material that becomes unstable at 750°C. On the other hand, transparent silicon nitride ceramic can withstand temperatures upto 1400°C and is much cheaper. Read on...
Chemistry World:
Super-hard transparent ceramic looks good
Author:
Katrina Krämer
Mohammad Anas Wahaj | 20 mar 2017
Team of researchers from IIT-Kharagpur, Prof. Sudip Misra, Prof. N. S. Raghuwanshi, Anandarup Mukherjee and Arijit Roy, has designed India's first indgenous drone, BHIM, that can create a Wi-Fi zone within a nearly 1 km radius when it flies overhead. It is specifically designed for emergency and conflict situations. It has a battery backup of 7 hours, can fly into a disaster zone and create a seamless communication network for those involved in the operation. The automated drone has an actual vision-based guidance with built-in intelligence that helps it identify if an area is crowded or not. It will then fly away and land in a safer place. According to Prof. Sudip Mishra, 'Such advanced built-in intelligence is not available in drones now. The design is completely in-house. The controlling and guiding algorithms of the drone have been developed in our lab.' Internet of Things (IoT) is an important component of the drone. Read on...
The Times of India:
IIT-Kharagpur develops superpower drone BHIM
Author:
Jhimli Mukherjee Pandey
Mohammad Anas Wahaj | 12 mar 2017
Researchers from Hokkaido University (Japan) have created 'fiber-reinforced soft composites' or tough hydrogels combined with woven fiber fabric. The study, 'Energy-Dissipative Matrices Enable Synergistic Toughening in Fabric Reinforced Soft Composites' (Authors - Yiwan Huang, Daniel R. King, Taolin Sun, Takayuki Nonoyama, Takayuki Kurokawa, Tasuku Nakajima, Jian Ping Gong), was recently published in Advanced Functional Materials. Researchers combined hydrogels containing high levels of water with glass fiber fabric to create bendable, yet tough materials, employing the same method used to produce reinforced plastics. They found that a combination of polyampholyte (PA) gels, a type of hydrogel they developed earlier, and glass fiber fabric with a single fiber measuring around 10µm in diameter produced a strong, tensile material. The procedure to make the material is simply to immerse the fabric in PA precursor solutions for polymerization. The developed fiber-reinforced hydrogels are 25 times tougher than glass fiber fabric, and 100 times tougher than hydrogels. Moreover, the newly developed hydrogels are 5 times tougher compared to carbon steel. According to lead researcher, Prof. Jian Ping Gong, 'The fiber-reinforced hydrogels, with a 40 percent water level, are environmentally friendly. The material has multiple potential applications because of its reliability, durability and flexibility. For example, in addition to fashion and manufacturing uses, it could be used as artificial ligaments and tendons, which are subject to strong load-bearing tensions.' Read on...
Hokkaido University News:
New "tougher-than-metal" fiber-reinforced hydrogels
Authors:
Jian Ping Gong, Naoki Namba
Mohammad Anas Wahaj | 23 feb 2017
Society continues to face challenges to construct affordable, high-quality, innovative and future-focused built environments. Many building processes are sub-standard and obsolete, with sustainability concerns. Current research on integration of digital technologies within architectural and construction processes promises substantial contributions to sustainability and productivity. Research connections between diverse fields like architecture, structural design, computer science, materials science, control systems engineering, and robotics are required. Researchers during the American Association for the Advancement of Science (AAAS) 2017 reveal latest developments in digital fabrication in architecture at 1:1 building scale. They explain successful integration of digital technologies in design, planning, and building processes to transform the building industry. (1) On Site Digital Fabrication for Architecture: Prof. Jonas Buchli, Agile and Dexterous Robotics at ETH Zurich (Switzerland), proposes a radical focus on domain specific robotic technology enabling the use of digital fabrication directly on construction sites and in large scale prefabrication. (2) The New Mathematics of Making: Prof. Jane Burry, Director of the Spatial Information Architecture Laboratory at RMIT University in Melbourne (Australia), explores how these opportunities (Digital computation; Linking of design attributes to extraneous factors; Mathematical design models etc) for automation, optimization, variation, mass-customisation, and quality control can be fully realised in the built environment within full scale construction. (3) Building Materials for 3D Printing: Prof. Ronald Rael, Architecture at University of California at Berkeley (USA), reveals the development of new materials that can overcome the challenges of scale and costs of 3D printing on 1:1 construction scale. He demonstrates that viable solutions for 3D printing in architecture involve a material supply from sustainable resources, culled from waste streams or consideration of the efficiency of a building product's digital materiality. Read on...
ETH Zurich Global News:
Digital Fabrication in Architecture - The Challenge to Transform the Building Industry
Author:
Rahel Byland Skvarc
Mohammad Anas Wahaj | 25 jan 2017
Team of researchers from Massachusetts Institute of Technology (USA) (Markus Buehler, Zhao Qin, Gang Seob Jung, Min Jeong Kang), has designed one of the strongest lightweight materials known, by compressing and fusing flakes of graphene, a 2-dimensional form of carbon. The new material, a sponge-like configuration with just 5% the density of steel, can have a strength 10 times more. The findings, published in the journal 'Science Advances', show that critical factor of 3-D form is their unusual geometrical figure, suggesting that similar strong, lightweight materials can be made from other materials by creating similar geometric figures. 2-D materials have exceptional strength alongwith unique electrical proberties. But they are extraordinarily thin. Prof. Buehler says, 'They are not very useful for making 3-D materials that could be used in vehicles, buildings, or devices. What we've done is to realize the wish of translating these 2-D materials into 3-D structures.' Prof. Qin adds, 'Once we created these 3-D structures, we wanted to see what's the limit - what's the strongest possible material we can produce.' According to Prof. Buehler, 'You can replace the material itself with anything. The geometry is the dominant factor. It's something that has the potential to transfer to many things.' Prof. Huajian Gao of Brown University comments, 'This is an inspiring study on the mechanics of 3-D graphene assembly. The combination of computational modeling with 3-D-printing-based experiments used in this paper is a powerful new approach in engineering research. It is impressive to see the scaling laws initially derived from nanoscale simulations resurface in macroscale experiments under the help of 3-D printing. This study shows a promising direction of bringing the strength of 2-D materials and the power of material architecture design together.' Read on...
MIT News:
Researchers design one of the strongest, lightest materials known
Author:
David L. Chandler
Mohammad Anas Wahaj | 17 sep 2016
Researchers from Stanford University [Po-Chun Hsu, Alex Y. Song, Peter B. Catrysse, Chong Liu, Yucan Peng, Jin Xie, Shanhui Fan, Yi Cui] have developed a low-cost, plastic-based textile that, when woven into clothing, has the ability to keep the body cool more efficiently as compared to the natural or synthetic fabrics that are used today. The research was published in journal 'Science' titled, 'Radiative human body cooling by nanoporous polyethylene textile'. According to Prof. Yi Cui of Materials Science and Engineering, 'If you can cool the person rather than the building where they work or live, that will save energy.' The new material cools by letting perspiration evaporate through it, as fabrics normally do. But the other most innovative characteristic of the material's cooling mechanism is that it allows heat that the body emits as infrared radiation to pass through the plastic textile. Prof. Shanhui Fan of Electrical Engineering says, '40-60% of our body heat is dissipated as infrared radiation when we are sitting in an office. But until now there has been little or no research on designing the thermal radiation characteristics of textiles.' Researchers engineered the cooling material by blending nanotechnology photonics and chemistry to give polyethylene, the material used as kitchen wrap, a number of characteristics desirable in clothing material. It allows thermal radiation, air and water vapor to pass right through, and it is opaque to visible light. Prof. Cui says, 'If you want to make a textile, you have to be able to make huge volumes inexpensively.' According to Prof. Fan, 'This research opens up new avenues of inquiry to cool or heat things, passively, without the use of outside energy, by tuning materials to dissipate or trap infrared radiation.' Read on...
Stanford News:
Stanford engineers develop a plastic clothing material that cools the skin
Author:
Tom Abate
Mohammad Anas Wahaj | 03 sep 2016
Multidisciplinary team of researchers lead by Prof. Amin Salehi-Khojin from University of Illinois at Chicago (UIC) have engineered a process through a solar cell to mimic plants' ability to convert carbon dioxide into fuel, a way to decrease the amounts of harmful gas in the atmosphere and produce clean energy. According to Prof. Salehi-Khojin, 'The artificial leaf essentially recycles carbon dioxide. And it's powered entirely by the sun, mimicking the real photosynthesis process. Real leaves use the energy from the sun and convert carbon dioxide to sugar. In the artificial leaf that we built, we use the sun and we convert CO2 to (synthetic gas), which can be converted to any hydrocarbon, like gasoline.' Describing the process Prof. Salehi-Khojin said, 'The energy of the sun rearranges the chemical bonds of the carbon dioxide. So the sun's energy is being stored in the form of chemical bonds, which can be burned as fuel...Scientists around the world have been studying carbon reduction, as this type of reaction is called, for years.' Prof. Nathan Lewis of California Institute of Technology, who has been studying solar fuels and artificial photosynthesis for more than 40 years, says, 'UIC's development is only a small piece of an eventual solar fuel product that can be widely implemented. There's a lot of steps that need to occur to envision how these things would translate into a commercializable system, but it's a step for building a piece of a full system that may be useful.' Prof. Michael R. Wasielewski of Northwestern University comments, 'UIC's development could push renewable energy technology forward.' The research, 'Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid', was recently published in journal 'Science'. UIC News Center website (news.uic.edu) provides the following information about co-authors and collaborators of this research - Amin Salehi-Khojin, Mohammad Asadi, Kibum Kim, Aditya Venkata Addepalli, Pedram Abbasi, Poya Yasaei, Amirhossein Behranginia, Bijandra Kumar and Jeremiah Abiade of UIC's Mechanical and Industrial Engineering Department, who performed the electrochemical experiments and prepared the catalyst; Robert F. Klie and Patrick Phillips of UIC's Physics Department, who performed electron microscopy and spectroscopy experiments; Larry A. Curtiss, Cong Liu and Peter Zapol of Argonne National Laboratory, who did Density Functional Theory calculations; Richard Haasch of the University of Illinois at Urbana-Champaign, who did ultraviolet photoelectron spectroscopy; José M. Cerrato of the University of New Mexico, who did elemental analysis. Read on...
Chicago Tribune:
UIC researchers develop artificial leaf that turns CO2 into fuel
Author:
Ally Marotti
Mohammad Anas Wahaj | 12 aug 2016
Team of multidisciplinary researchers from Case Western Reserve University (USA) [Victoria Webster; Roger Quinn; Hillel Chiel; Ozan Akkus; Umut Gurkan; Emma L. Hawley; Jill M. Patel; Katherine J. Chapin], have created a 'biohybrid' robot by combining sea slug materials with 3D printed parts, that can crawl like sea turtle. Scientists suggest that in future, swarms of biohybrid robots could be released for such tasks as locating the source of a toxic leak in a pond that would send animals fleeing. They could also be used to search the ocean floor for a black box flight data recorder, a potentially long process that may leave current robots stilled with dead batteries. According to Ms. Webster, PhD student and lead researcher, 'We're building a living machine - a biohybrid robot that's not completely organic - yet. For the searching tasks, we want the robots to be compliant, to interact with the environment. One of the problems with traditional robotics, especially on the small scale, is that actuators - the units that provide movement - tend to be rigid.' Researchers also explain that if completely organic robots prove workable a swarm released at sea or in a pond or a remote piece of land, won't be much of a worry if they can't be recovered. They're likely to be inexpensive and won't pollute the location with metals and battery chemicals but be eaten or degrade into compost. Read on...
think - CWRU Blog:
Researchers build a crawling robot from sea slug parts and a 3-D printed body
Author:
Kevin Mayhood
Mohammad Anas Wahaj | 28 jul 2016
Packaging is an important component of product handling, logistics, advertising, marketing and selling. There are variety of materials that are currently in use for packaging. Environmental challenges arise due to the waste generated through discarded packagings. The packaging industry is exploring better materials that can reduce environmental footprint. In spite of scientific breakthroughs in developing new packaging materials, there are issues related to their performance and price, inhibiting their mass adoption and usage. Bryan Shova, packaging designer and industrial design director at Kaleidoscope, explains sustainability aspects of packaging. He says, 'I dream of the day when material science and manufacturing can deliver on the promise of zero environmental impact, high performance, premium finish and low costs.' He explains, 'The viability of true sustainability is a complex economic challenge, and the ugly truth is that few consumers, brand owners or municipalities are willing to pay the premium price for cutting-edge sustainable packaging solutions. True solutions will come through "systems thinking" that requires the material supplier, manufacturer, retailer, consumer and the municipality to share in the premium costs and labor required to design, collect and recycle packaged materials.' He provides 10 principles for designing sustainable packaging - (1) Start with commodity materials that are commonly recycled. (2) Design the package from a single material. (3) Focus on the product-to-package ratio. (4) Design for assembly at the point of manufacture. (5) Avoid gluing and laminations. (6) Design for distribution. (7) Eliminate secondary and tertiary packaging when possible. (8) Design for disassembly. (9) Clearly mark the materials on the packaging components. (10) Use Lifecycle Assessment. Read on...
Packaging Digest:
10 ways to design sustainable packaging with intent
Author:
Bryan Shova
Mohammad Anas Wahaj | 30 may 2016
As the need for intensive and intermediate care increases, the hospitals must have spaces that can fulfil the requirement. The multi-organizational collaborative EVICURES project at Seinäjoki Central Hospital in Finland was undertaken to develop a new design model for future intensive and intermediate care needs. The result of research conducted by VTT Technical Research Centre of Finland on evidence-based design (EBD) and user orientation were applied to design work. Currently, there are no ICUs with single patient rooms in Finland. According to Kari Saarinen, Project Manager of the EVICURES project and Chief Physician at ICU of Hospital District of South Ostrobothnia, 'The international trend is that the need for intermediate care in particular is increasing. More and more demanding methods are being used for treating patients, and the share of elderly patients is increasing.' Regarding the project, he adds, 'The operations will be more cost-efficient and of higher quality, when the equipment and nursing staff are concentrated into one place. We also expect the solution to have remarkable effects on patient healing.' The hospital staff, management, patients and their families, the hospital district, and other cooperation partners participated in the design work. Tiina Yli-Karhu, Design Coordinator at Hospital District of South Ostrobothnia, says, 'A user-oriented approach was an essential foundation for the whole project. This way we can all together make the major change about to happen easier, when the nursing staff is moving from facilities for multiple patients to working alone in single rooms.' Using the Human Thermal Model tool, VTT performed questionnaire studies and measurements to evaluate the individual thermal sensation and comfort of both the staff and patients, that were utilized in HVAC design. Seinäjoki University of Applied Sciences used CAD methods to model a virtual space in accordance with the architectural drawing, which VTT utilised for improving user-friendliness. From this 3D model, VTT developed a Unity3D game for computer and tablet, allowing the staff to move around in the ICU facilities virtually and to experience realistic interactive care situations in the new working area in advance. Finland's first single-patient intensive and intermediate care and cardiac unit designed in accordance with this model will become operational in 2018. Read on...
VTT Research News:
A new treatment room design model for future hospitals
Author:
Nykänen Esa
Latest ⊲ Newer Posts Engineering & Technology Older Posts ⊳ Last
©2025, ilmeps
disclaimer & privacy