mawdesigns
Topic: architecture | authors | design education | design entrepreneurship | engineering & technology | fashion & textile | furniture & interior | general | graphic | human resources | industrial & product | landscape | people | reviews | university research | web
Date: 2013 | 2014 | 2015 | 2016 | jan'17 | feb'17 | mar'17 | apr'17 | may'17 | jun'17 | jul'17 | aug'17 | sep'17 | oct'17 | nov'17 | dec'17 | 2018 | 2019 | 2020 | jan'21 | feb'21 | mar'21 | apr'21 | may'21 | jun'21 | jul'21 | aug'21 | sep'21 | oct'21 | nov'21 | dec'21 | jan'22 | feb'22 | mar'22 | apr'22 | may'22 | jun'22 | jul'22 | aug'22 | sep'22 | oct'22 | nov'22 | dec'22 | jan'23 | feb'23 | mar'23 | apr'23 | may'23 | jun'23 | jul'23 | aug'23 | sep'23 | oct'23 | nov'23 | dec'23 | jan'24 | feb'24 | mar'24
Headlines
10 plant whisperers in India who make design green | Architectural Digest, 12 nov 2024
Embracing flexibility: Transitioning to a more adaptable design system | VentureBeat, 12 nov 2024
3 Questions: Inverting the problem of design MIT News, 12 nov 2024
Building Resilient Architecture for Extreme Cold: BIOSIS’s Climate-Driven Design | ArchDaily, 12 nov 2024
Finding the Sweet Spot Between Fashion, Design and Food | WWD, 12 nov 2024
Design studios reveals what got them energised and excited about 2025 | Creative Boom, 11 nov 2024
AR Tools for Real Estate and Architecture | Analytics Insight, 11 nov 2024
BEST DESIGN APPS FOR THE CREATIVE INDUSTRY | Yanko Design, 10 nov 2024
Why the future of product design is all about how it feels | Fast Company, 07 nov 2024
Raymond Loewy: American industrial designer | Britannica, 01 nov 2024
January 2017
Mohammad Anas Wahaj | 25 jan 2017
Team of researchers from Massachusetts Institute of Technology (USA) (Markus Buehler, Zhao Qin, Gang Seob Jung, Min Jeong Kang), has designed one of the strongest lightweight materials known, by compressing and fusing flakes of graphene, a 2-dimensional form of carbon. The new material, a sponge-like configuration with just 5% the density of steel, can have a strength 10 times more. The findings, published in the journal 'Science Advances', show that critical factor of 3-D form is their unusual geometrical figure, suggesting that similar strong, lightweight materials can be made from other materials by creating similar geometric figures. 2-D materials have exceptional strength alongwith unique electrical proberties. But they are extraordinarily thin. Prof. Buehler says, 'They are not very useful for making 3-D materials that could be used in vehicles, buildings, or devices. What we've done is to realize the wish of translating these 2-D materials into 3-D structures.' Prof. Qin adds, 'Once we created these 3-D structures, we wanted to see what's the limit - what's the strongest possible material we can produce.' According to Prof. Buehler, 'You can replace the material itself with anything. The geometry is the dominant factor. It's something that has the potential to transfer to many things.' Prof. Huajian Gao of Brown University comments, 'This is an inspiring study on the mechanics of 3-D graphene assembly. The combination of computational modeling with 3-D-printing-based experiments used in this paper is a powerful new approach in engineering research. It is impressive to see the scaling laws initially derived from nanoscale simulations resurface in macroscale experiments under the help of 3-D printing. This study shows a promising direction of bringing the strength of 2-D materials and the power of material architecture design together.' Read on...
MIT News:
Researchers design one of the strongest, lightest materials known
Author:
David L. Chandler
©2024, ilmeps
disclaimer & privacy